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1 Introduction

Superconductivity has been in the spotlight of condensed matter research since its discovery
by Kamerlingh Onnes in 1911 [5]. He observed that the electrical resistance of metals such
as mercury, lead, and tin would disappear below a certain material-dependent threshold
called the critical temperature, T,. It is this property of vanishing electrical resistance that
is known as superconductivity.

The prospect of high-temperature superconductors (HTS), has immense potential for
technical applications — HTS could replace all conventional conductors as they have zero
electrical resistance. Some applications include energy storage, efficient energy transmission,
transportation, and use in particle accelerators and nuclear fusion reactors for magnetic
confinement.

Despite over a century of research, it remains a challenge both theoretically and experimentally
to understand the connection between superconductivity and a material’s chemistry and
structure [12]. This complexity comes from the fact that existing theories of superconductivity
can only describe a portion of existing superconductors and do not work for high-temperature
superconductors. It is possible to take advantage of the abundance of discovered superconductors
and the accessibility of materials databases and apply machine learning methods to gain a
better understanding of the correlations that tie superconductivity to the material’s chemistry
and structure. In this work we take advantage of open databases to apply machine learning
methods for classifying superconductors and predicting their critical temperature.

To this aim we follow the method proposed by Roter and Dordevic in their 2020 paper
which proposed a simple method for superconductor classification and critical temperature
prediction. They claim that their models’ performance was on par with the most accurate
models proposed in the field, using only the chemical composition of the materials as features
[8]. For this project, we seek to build upon their paper, and provide further insight into the

role that chemical composition plays in superconductivity.



1.1 History of Superconductivity Theory

Superconductivity has come a long way since its discovery at the start of the 20th century.
According to Schrieffer, an important author in the theory that described superconductivity,
this phenomenon can be initially described as electrons condensing into a macro-molecule
that is capable of motion as a whole as a super-fluid; as the temperature nears 7., a
second order phase transitions occurs from a normal state (or normal fluid) to a super-fluid
associated with a rigidity, with respect to a perturbation such as a magnetic field [10]. To
fully understand how the theory for superconductivity was reached, it is important to look
at the history behind the description of this phenomenon.

Historically the next breakthrough after the discovery of superconductivity occurred in
1933 by Meissner and Ochsenfel with the discovery of the perfect diamagnetism of bulk
superconductors in weak magnetic fields — this is known as the Meissner effect. This effect
indicates that a magnetic field is excluded from entering a superconductor and any field
within a non-superconducting sample will be expelled once temperature drops through T,
implying that superconductivity will be destroyed by a critical magnetic field H,.. This field
is related to the free energy difference between the normal and superconducting states at
zero field [13].

Returning to the idea of the rigidity of a superfluid, the London brothers proposed a
phenomenological theory related to the electromagnetic behavior of superconductors. This
was based on the two-fluid type concept mentioned by Schrieffer that have two different fluid
densities and velocities. They also introduced a parameter related to the penetration of fields
within the surface of a superconductor called the London penetration depth [4]. Parameters
such as the coherence length were obtained from proposing a non-local generalization of the
London equation — this is analogous to the mean free path ¢ in non-local electrodynamics
of normal metals [13].

An important advancement towards understanding superconductivity was Landau’s contribution

to the theory of phase transitions, which describes symmetry breaking at low temperature



phase transitions. This work provided inspiration for another theory, the Ginsburg-Landau
theory [4]. This focuses on the superconducting electrons, rather than excitations, and
considers that the superfluid density may vary in space [10].

It wasn’t until the 1950s that a satisfactory theory was constructed to describe conventional
superconductors. The first aspect to understand of this theory, is the existence of an energy
gap of order kgT, between the ground state and the quasi-particle excitations [13]. The
presence of a band gap in a superconductor may be explained by the idea of Cooper pairs.
By focusing on the interaction between two electrons, Cooper showed that an arbitrarily small
attraction between electrons costs less energy for the electrons to pair up rather than float in a
Fermi sea. This interaction overcomes the Coulomb repulsion. The amount of energy needed
to break the pairs is know as binding energy and this corresponds to the superconducting gap.
The attraction between the electrons was associated with an electron-phonon interaction, and
was later described in what is know as BCS theory by Bardeen, Cooper and Schrieffer 4, 13].

BCS theory explains how the positions of the atomic cores are modified by the electrons’
electrostatic field and how phonons produce an attractive interaction between these electrons,
given by a potential V4. The pairs that form have opposite spin, thus they obey Bose-Einstein
statistics as they form a Bose-type condensate under a critical temperature. As this interaction
is mediated by phonons, the critical temperature scales with the Debye temperature T

instead of the Fermi temperature, 7. BCS theory gives the equation:
2e"E hwp =t

Tc = p EGVOPF (1].)

where Vopr < 1, v is the Euler constant, wp is the Debye frequency, V; is the attractive
interaction, and pr is the density of states. The density of states indicates the pairing is

limited to the electrons that are near the Fermi surface [11].



1.2 The Many-body Hamiltonian

Most previous studies of superconductor classification and critical temperature prediction
using machine learning have relied on assembling a dataset of material features, either
calculated or measured experimentally [9]. These features include electronic, thermodynamic,
and quantum-mechanical quantities of the material — features which would have some
relevance to or correlation with superconductivity. At first glance, the chemical composition
of a material as features for training does not appear to contain relevant information to be
an accurate predictor. It is the purpose of this section to motivate why using the chemical
composition is not only valid, but potentially a powerful predictor.

As described by Townsend, the Hamiltonian, H, is the generator of time translations of a
system in quantum mechanics. In other words, it governs how a quantum state evolves over
time. Furthermore, the Hamiltonian is also the energy operator, corresponding to the total
energy of the system. By solving the time-independent Schrédinger equation, the eigenstates
and eigenenergies of the system can be computed. These eigenenergies have importance in
quantum mechanics as they correspond to the spectrum of possible energies a system can
have. [14]

The many-body Hamiltonian is the general Hamiltonian for a system with many interacting
particles. It is straightforward as it is composed of the kinetic energies of all the particles
in the system as well as the potential energies between each pair of interacting particles. A

system’s many-body Hamiltonian, which is composed of N, electrons and N,, nuclei is given
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where T, and T, are the kinetic energies of the electrons and nuclei, respectively; Vne,

Vee, and Vm are the potential energies of the electron-nuclei interactions, electron-electron

interactions, and nuclei-nuclei interactions, respectively. The indices 7, j run over the electrons,
and the indices I,.J run over the nuclei. Although eigenstates and eigenenergies of the

many-body Hamiltonian are impossible to solve analytically, it is in principle possible to

derive every chemical property of the material using the Hamiltonian. Each of the five terms

of Eq. 1.2 can be inferred from the chemical composition of the material (in addition to

knowledge of the structure of the material). [3]

Thus, by using only the chemical composition as training features, we are essentially
‘encoding’ all the chemical properties of relevance of the material. Although this ‘encoding’
is not explicit, and the Schrédinger equation is not solvable analytically, machine learning
is a powerful tool for learning patterns, correlations, and connections between chemical

composition and superconducting properties.

1.3 Data Science Objectives and Core Science Question

Since we are concerned with investigating the connections between chemical composition and
superconductivity, we choose to explicitly define two problems that we are going to tackle
using machine learning. The first problem is the classification problem, which is concerned
with determining if a given material is a superconductor or non-superconductor. The second
problem is the regression problem, which involves predicting the critical temperature of a
superconductor. For both of these problems, the only features that will be used are the
material’s chemical composition. These two problems, which are subsequently referred to
as classification and T, prediction, form the basis of this project. Having explicitly defined
the two problems that we are tackling in this work, we can now form our two central data

science objectives:

1. Train a classifier to determine whether or not a proposed material is a superconductor

or not.



2. Train a regressor to predict the critical temperature of a superconductor.

Pursuing these data science objectives are designed to help answer our core science question,
which is: why does it make physical sense for chemical composition to be so effective in

predicting superconductivity and critical temperature?

1.4 Report Breakdown

The subject of this report is to present on the machine learning of chemical composition to
predict superconductivity in materials and predict the T, of superconductors. The following
chapter outlines the data science pipeline we followed. Section 3 goes through our data
acquisition and wrangling step, specifically explaining how we form our datasets for training.
The subsequent two sections, 4 and 5, report on the results for classification and T, prediction,
respectively. Note that the details of the machine learning models used for both problems
are explained in Appendix A. Finally, Section 6 provides some concluding and evaluative
remarks as well as suggestions for future studies.

As stated earlier, this work builds upon [8]. Although their results are encouraging, upon
closer inspection of their methods, we found an abundance of problematic machine learning
practices. In an effort to illustrate the importance of proper machine learning practice, we

replicated their method and discuss its potential issues further in Appendix B.



2 Data Science Pipeline

The data science pipeline we followed is fully outlined in the table below.

Main Objective Sub-objective

Goals

Data Wrangling

1. Create the chemical
1. Normalize the rows of this

composition matrix.
matrix to sum to 1.
2. Create training, validation,

and testing sets with random

entries.

Steps

1. Collect data from both SuperCon and Materials Project.

2. Process formulae and find differing entries between the two data

sets.

3. Process the formulaec to match the form of the chemical

composition matrix.

4. Split into training, validation, and testing data.




Main Objective

Sub-objective

Exploratory Data

Goals

Analysis .

. Explore the abundance of each element in each compound, as well

as the whole dataset.
. Explore the sparsity of the chemical composition matrix.
Techniques
. Count quantities for each element.
Goals

Modeling

. Explore

k-NN  models

classifying superconductors.

temperature.

for | 1. Explore Bagged Trees models

for classifying superconductors.

. Explore Bagged Trees | 2. Explore Boosted Trees and
models  for  predicting a Random Forest models.
superconductor’s critical




Main Objective

Sub-objective

Techniques

. Produce a competitive k-NN

classification model.

. Produce a competitive Bagged

Trees regression model.

. Explore various k values for

k-NN models.

. Explore different quantities of

decision trees for Bagged Trees

models.

1. Produce competitive models for

Bagged Trees, Boosted Trees,

and Random Forests.

Validation

Goals

. Maximize classification

accuracy to at least 90%.

. Minimize root-mean-square

error  (RMSE) for predicted

critical temperatures.

1. Limit the use of the testing set

to the end of the study.




Main Objective

Sub-objective

Techniques

1. Train/Validation/Test Split.

Communication

Reporting

1. Performance of the best model.

2. Interesting findings as a result of each applied model.
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3 Data Acquisition & Wrangling

3.1 SuperCon & Materials Project

The SuperCon database contains the most extensive and up-to-date collection of known
superconductors with reference to journal entries [2]. Many machine learning projects
involving superconductivity rely heavily on information made available from the SuperCon
database, and their free-to-use data was the baseline of our project [8, 9, 12].

From the SuperCon database, we retrieved the chemical formulae of all the available
superconductors and their corresponding critical temperatures. At the time of download, we
obtained 33,248 superconductor entries. However, 7,059 entries did not have a listed T, 5
entries had a T, greater than 273 K, and 5,612 other entries that contained errors in their
chemical formulae. These errors could take the form of invalid element symbols, such as Z,
L, or Ox.

We aimed to use the chemical compositions as our predictors, and thus we were required
to remove all 5,612 entries that contained chemical formulae errors. We also planned to use
the same dataset of superconductors for our classification and regression problems. For this
reason we removed the 7,064 entries with a high or missing 7. After removing these entries,
we were left with 20,572 superconductors.

For our non-superconductors, we collected chemical formulae from the Materials Project.
The Materials Project is an open web-based database of materials, material properties, and
material analysis [7]. Their goal was to transition material studies into the computational
and information age. More information on the Materials Project can be viewed in [7].
Since the purpose of the SuperCon database is to be the most up-to-date with regard to
known superconductors, we assumed that any material present in the Materials Project
database but not in the SuperCon database is a non-superconductor [2]. We acquired 20,572
non-superconductors to match the amount of superconductors we gathered and created a

balanced dataset. For each entry in our database, we assigned a label of ‘0’ or ‘1’ to denote
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classes, where ‘0’ indicates a non-superconductor and a ‘1’ indicates a superconductor.
Thus, we have created a database for both the classification problem and the critical
temperature prediction problem. The dataset for the classification problem has 41,144
chemical formulae, 50% non-superconductors and 50% superconductors, with the 0/1 labeling,.
The dataset for the critical temperature prediction problem uses 20,572 superconductor
formulae with a matching T, for every entry. Now, we can create our so-called chemical

composition matrix, which is described in the next section.

3.2 Chemical Composition Matrix

Having obtained the chemical formulae, we created the chemical composition matrix, which
is shown in Table 3.1. This matrix involves splitting the elements present in each material
and assigning the index of each element as a column. Each row of this matrix is each chemical
formulae entry from our datasets. For consistency, we normalize each row by dividing by its

corresponding row sum such that molar ratios are preserved and values in each row sums to

1.
Formula Ba La Cu O ... Ne | Label
Lal.85Ba0.15CulO4 0.021 429 0.264 286 0.142 857 0.571429 ... 0.0 1
Lal.85Sr0.15CulO4 0.0 0.264 286 0.142857 0.571429 ... 0.0 1
Lul.8Ba0.2CulO4 0.028 571 0.0 0.142 857 0.571429 ... 0.0 1
Y0.9Ba0.1CulO4 0.016 667 0.0 0.166 667 0.666667 ... 0.0 1
Ba0.15Lal.85CulO4 0.021 429 0.264 286 0.142 857 0.571429 ... 0.0 1
Li5Mn7016 0.0 0.0 0.0 0.571429 ... 0.0 0
Mn2BeO4 0.0 0.0 0.0 0.571429 ... 0.0 0
U2Cr3Si 0.0 0.0 0.0 0.0 ... 0.0 0
BeSe 0.0 0.0 0.0 0.0 ... 0.0 0
K15Cr7N19 0.0 0.0 0.0 0.0 ... 0.0 0

Table 3.1: An overview of the normalized chemical composition dataset, for the classification
problem. ‘Label’” indicates whether the material is a superconductor (1) or non-superconductor (0).
For the T, prediction problem, the ‘Label’ column is replaced by a column containing ‘7T, .
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The models we used take a row from this matrix as input and would output a 0 or 1 in

the case of classification, or a predicted critical temperature in the case of regression.

3.3 Training, Validation, & Testing Sets

We split our datasets by 70% for training, 15% for validation, and 15% for testing. The exact
number of entries for the classification and regression problem are shown in Table 3.2. Before
the split, the datasets were shuffled randomly so that the entries present in each category
after the split is near evenly distributed. The extra 2 entries in the testing sets compared to

the validation sets was a design choice to deal with rounding errors.

H Training (70%) | Validation (15%) | Testing (15%)

Classification 28,800 6,171 6,173
Regression 14,400 3,085 3,087

Table 3.2: The number of entries in the training, validation, and testing sets for both the
classification problem and the regression problem.

13



4 (Classification

Our proposed classification technique differs from that proposed by Roter and Dordevic in
a few key areas. First, we normalized our chemical composition matrices in such a way that
each row would sum to one. We did so to maintain the integrity of elemental ratios and to
not give an advantage to high number elements. Furthermore, we chose to forgo PCA as we
saw no physical motivation for the action.

Roter and Dordevic built k-NN, Bagged Trees, Boosted Trees, and Support Vector
Machine models for classification. Their most accurate model was k-NN at a reported 96.5%
[8]. We also implemented k-NN, Bagged Trees, and Boosted Trees, but opted instead to use
Random Forest as our fourth and final model. See Appendix A for details regarding the
machine learning methods mentioned here. After completing training and optimizing on the
validation set, we received the accuracy report as shown in Table 4.1 when classifying our
test data.

At first glance, our results appear to mimic Roter and Dordevic. Like them we found
every model to have > 92% accuracy. However, this greatly surprised us as we had previously
attributed much of their accuracy to problematic methodology, as shown in Appendix B.
Specifically, we were especially surprised by the k-NN results. Compared to the other
three models, k-NN is incredibly simple, especially in this case where k=1. It looks at
the nearest neighbor in Euclidean space and achieves a 93% accuracy. This indicates a
stronger correlation than we anticipated.

Our best model was the Random Forest classifier which matched Roter and Dordevic’s
reported 96% accuracy [8]. Additionally, given the ensemble nature of Random Forest
algorithms, we were able to compile the feature importance for each element in the chemical
composition matrix space. This was done by taking an unweighted mean feature importance
across the respective decision trees of the Random Forest model.

The five most important features for classification were Oxygen (9.636%), Copper (7.008%),
Barium (3.940%), Lanthanum (2.772%), and Flourine (2.412%), as shown in Fig. 4.1.

14



Model Class Precision | Recall | F1-Score
Random Forest 0 0.97 0.95 0.96
1 0.95 0.97 0.96
Accuracy 0.96
Boosted Trees 0 0.95 0.94 0.94
1 0.94 0.95 0.94
Accuracy 0.94
Bagged Trees 0 0.97 0.92 0.95
1 0.93 0.97 0.95
Accuracy 0.95
k-NN (k=1) 0 0.98 0.88 0.92
1 0.89 0.98 0.93
Accuracy 0.93

Table 4.1: Validation statistics by model with improved chemical composition classification.
Validation data was split from the balanced dataset.

While these results are interesting, they were expected as Oxygen and Copper have been
linked to superconductivity [10]. However, we were surprised by the lack of noble gas
representation. Helium, Argon, and Neon had feature importances of zero while Xenon and
Krypton had importances of 1.917 x 10~7% and 1.917 x 1078% respectively. Neither Radon
nor Oganesson were present in the training chemical composition matrix inputs and thus
were irrelevant regarding feature importances. We know that no superconductors contain
noble gases so we expected them to have a high feature importance in classification, as the
models would be filtering out compounds with noble gases present. However, given this is
not the case, we theorized that our models are finding patterns within ratio analysis and not
labeling based on a process of elimination.

To test this hypothesis, we implemented a binary chemical composition matrix. Rather
than including a normalized ratio of chemical composition we placed a 1 for elements present

in the compound and a 0 for those not present. When classification models were trained on
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Random Forest Feature Importance for Superconductor Classification

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
| ] 1 | | 1 | | 1 | 1 | | 1 | | 1 |
1 2
17 H He
Hydrogen Helium
0.01 0
3 4 5 6 7 9 10
2+ Li Be B C N F Ne
Lithium Beryllium Boron Carbon Nitrogen Fluorine Neon
0.022 0.003 0.019 0.018 0.021 0.024 0
1 12 13 14 15 16 17 18
s+ Na Mg Al Si P S Cl Ar
Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon
0.016 0.016 0.01 0.012 0.011 0.017 0.015 0
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
+7 K Ca Sc Ti V Cr Mn Fe Co Ni |[Cul Zn Ga Ge As Se Br Kr
Potassium Calcium Scandium Titanium Vanadium Chromium  Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
0.013 0.012 0.005 0.009 0.009 0.009 0.019 0.022 0.013 0.014 0.07 0.015 0.008 0.009 0.02 0.012 0.007 0
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
stRb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium  Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium lodine Xenon
0.006 0.022 0.019 0.009 0.023 0.014 0.002 0.008 0.008 0.009 0.01 0.008 0.009 0.009 0.006 0.008 0.007 0
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
e+ Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
Cesium Barium Lanthanum Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon
0.008 0.039 0.028 0.006 0.006 0.006 0.004 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.014
87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 17 118
7~ Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn Nh FlI Mc Lv Ts Og
Francium Radium Actinium  Rutherfordium ~ Dubnium  Seaborgium Bohrium Hassium itnerit Ds il i Ce icil Nihonium Flerovium Moscovium  Livermorium  Tennessine  Oganesson
0.001
58 59 60 61 62 63 64 65 66 67 68 69 70 71
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Cerium  Praseodymium Neodymium Promethium  Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium
0.01 0.007 0.007 0.002 0.007 0.005 0.004 0.006 0.005 0.006 0.006 0.004 0.005 0.004
90 91 92 93 94 95 96 97 98 99 100 101 102 103
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No | Lr
Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium  Californium  Einsteinium Fermium  Mendelevium  Nobelium  Lawrencium
0.005 0.001 0.006 0.002 0.002 0 0

Figure 4.1: The table displays the feature importance of each element in our Random Forest
classification model. Specific element feature importance values are shown at the bottom of the
respective cell. Blue tones indicate the relative importance with darker tones indicating increased
importance. Light grey tones indicate that the element received a feature importance of zero. Dark
gray tones indicates the element was not found in the chemical composition matrix.

this, we saw significant decreases in accuracy. Additionally, we created a custom validation
dataset which only included compounds where all constituent elements are also present
in known superconductors. When testing on the custom shared validation set we saw no

significant decrease in model accuracy. Both of these results support our hypothesis.
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5 T, Prediction

We only explored the Bagged Trees algorithm for critical temperature prediction. We used
the chemical composition matrix described in Section 3 as our input for training, validation,

and testing.

5.1 Results

We define our resolution as the predicted critical temperature minus the true critical temperature:
AT. = TPredicted . TTrue
¢ — ~c¢ c :

In the perfect case, for AT, we would achieve a standard deviation of 0 K and all values
would appear at 0 K. However, this is not something we would hope for or ever expect to
achieve, for this would indicate that there is a mistake in the model.

The distribution we produced when recreating Roter and Dordevic’s methods is precise
with respect to AT, but would be the result of overfitting [1]. The model was able to train
to perform as best as possible for the given data, but has no indication of how it will perform
when applied to new data. Following the use of a training, validation, and testing split, we
expected a much more robust model at a higher RMSE and standard deviation [1]. A more
detailed discussion on the recreated results are given in Appendix B.

We tested this hypothesis using our training, validation, and testing dataset where we
achieved a RMSE of approximately 7.97 K on our testing set.  As expected, this value
is significantly greater than the 4.11 K we obtained by using all samples during training.
This trend follows with the resolution. We found AT, had a mean value of 0.1380 K and
a standard deviation of 8.1891 K. The exact distribution, shown in Fig. 5.3a, has a similar
shape to the overfitted results with predictable changes in terms of the width and height.
One would expect a shorter height due to the decrease in samples from splitting and a wider

distribution when applying a model to new samples.
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Figure 5.1: These plots are the result of our testing set. (a) Scatter plot of predicted critical
temperature versus the true critical temperature. The red line is y = z and only used for

visualization. The green lines are shifted by £ 8.91 to represent the RMSE achieved by Roter
and Dordevic [8]. The blue lines are shifted by £ 7.97 to represent the RMSE achieved by our
model. (b) Scatter plot of Predicted T - True T versus True T¢. The red shaded region is the
area where the predicted critical temperature is less than 0 K. Both plots make use of transparent
points to better visualize density.

An important goal we considered is to not produce any negative predicted temperatures.
In Fig. 5.2b, we show that our approach produced no negative temperatures. The red region
in this plot indicates where negative predicted temperatures would occur. This is a notable
result as it shows that our model has learned a physical barrier to potential temperatures.

Another notable result is the feature importance of the elements when predicting the
critical temperature. This is shown in Fig. 5.4. The most important element is copper at
66.0%), with oxygen as the second most important at 8.7%. This result is interesting for the

same reasons that were explained in Section 4.

18



140

120 A

100 A

Predicted T¢ (K)

0 - A.AI : T : T T
0 20 40 60 80
True T¢ (K)

(a)
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(a) Scatter plot of predicted

critical temperature versus the true critical temperature. The red line is y = = and only used
for visualization. The green lines are shifted by + 8.91 to represent the RMSE achieved by Roter

and Dordevic [8].

The blue lines are shifted by + 8.11 to represent the RMSE achieved by our

practical model. (b) Scatter plot of Predicted T - True T versus True T. The red shaded
region is the area where the predicted critical temperature is less than 0 K. Both plots make use

of transparent points to better visualize density.
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Figure 5.3: (a) Resolution histogram of our validation set on a model trained on a training set.
(b) Resolution histogram of our testing set using the same model as that produced (a).
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Bagged Tree Feature Importance for Critical Temperature Prediction

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18
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Figure 5.4: The table displays the feature importance of each element in our Bagged Tree
regression model. Specific element feature importance values are shown at the bottom of the
respective cell. Blue tones indicate the relative importance with darker tones indicating increased
importance. Light grey tones indicate that the element received a feature importance near zero.
Dark gray tones indicates the element was not found in the chemical composition matrix.

21



6 Discussion and Conclusion

An important aspect of using machine learning algorithms to predict properties in materials is
being able to encompass all the necessary information from the materials as to be able to tell
the different atomic and crystalline structures apart [9]. A simple approach to this problem
is by taking into account only chemical composition for the classification of superconductors
and the prediction of their critical temperatures.

By exploring our dataset using a simple chemical composition encoding scheme, we found
high accuracy in both the classification and prediction problems. The best performing model
for both classification and regression was the bagged trees model, for which we have achieved
a classification accuracy of 95% and a prediction RMSE of 7.97 K.

One of the important aspects of this model is its ability to predict critical temperature
with high accuracy based solely on chemical composition. In principle, any property can
be calculated given chemical composition. Knowing chemical composition you can obtain
its specific Hamiltonian, as shown in Eq. 1.2; what is needed is where each nuclei sits
in thermodynamic equilibrium, not taking into account any quantum fluctuations. When
applying this to a theory such as BCS, the model begins to break down as BCS is a poor
approximation to obtaining the critical temperature. In order to obtain more accurate
predictions we would have to go beyond the BCS treatment, for example with better variational
wavefunctions than the BCS wavefunction and variational quantum monte carlo which keep
superconducting correlations.

A possible approach to understanding this model is by looking at the BCS theory
superconducting transition temperature which is given by Eq. 1.1. The relevant parameter
here is the Debye frequency which is related to the Debye temperature and at the same time

related to the molecular weight and number of atoms present [3]:

A h3n [Np]'/?
T, — wp Sn{_p} .

kg  dkm | M
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This relation indicates that in BCS theory heavier compounds will have a lower frequency
and thus a lower T¢. If the element is lighter it will have higher frequency and higher T —
this is directly related to how these systems have a stronger coupling.

Despite using a method that does not include any relevant features for the theory of
superconductivity such as resistivity, superfluid density, band structure features [8], our
model is performing better than expected to so for a simple input. By using chemical
composition we will not be able to obtain any theoretical model that may help in writing a
new theory of superconductivity, but it does show a correlation among the compounds the
present superconductivity.

Even though SuperCon has a limited number of known superconductors compared to
non-superconductors, a clear trend is present in our data with an underlying pattern only
the model is able to uncover. This model will help understand what materials or combination
of materials are more likely to produce a superconducting material with either high or low
critical temperature. However, we have to be aware of the potential presence of experimental
bias due to the prevalence of more heavily studied superconductors, such as those that contain
oxygen and copper.

Nevertheless, this project has provided some interesting insights regarding the role chemical
composition plays in classifying superconductors and predicting critical temperature. We
hope that this will be further explored for algorithms that can better incorporate the chemical
composition and that this work provides a base for a more detailed analysis of the feature
space to be done. Future work will require studying Isomaps and local linear embedding
for dimensional reduction as well as methods such k-means clustering and further methods
such as deep learning to gain a better understanding how this model is predicting critical

temperature and classifying superconductors.
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A Common Terms

1. Random Forest: The random forest algorithm works by creating an ensemble of
decision trees and classifying via the mean output of the set. Random forests improve

upon a single decision by reducing tendencies to overfit. [6, p. 197]

2. Bagging: Bagging algorithms work by sampling with replacement from the data and
creating a variety of new datasets. A different decision tree is then trained on each

dataset and the output of is formed by the average of the forests predictions. [6, p. 192]

3. Gradient Boosting: Gradient boosting adds predictors to an ensemble and attempts

to correct residual errors. [6, p. 203]

4. k-NN: The k-nearest neighbor algorithm works by evaluating the Euclidean distance
between the input vector and dataset vectors. The prediction comes from averaging

the labels of the k nearest points to the input. [6, p. 22]

5. Principal Component Analysis: A popular dimensional reduction algorithm, principal
component analysis identifies and projects the data onto the closest hyperplane. [6,

p. 219]
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B Replication of Roter and Dordevic

B.1 Replication of Roter and Dordevic’s Classification Results

To replicate Roter and Dordevic’s results, we used our un-normalized and imbalanced chemical
composition dataset. We then ran PCA and reduced the initial vector space of size 81 down
to 15 components. See Appendix A for more details on PCA. Like Roter and Dordevic we
trained using the entire dataset, and tested on the same data used for training [8]. These

test results are shown in Table B.1.

Model Class | Precision | Recall | F1-Score
Boosted Trees 0 0.78 0.62 0.69
1 0.96 0.98 0.97
Accuracy 0.95
Bagged Trees 0 1.00 1.00 1.00
1 1.00 1.00 1.00
Accuracy 1.00
k-NN (k=5) 0 0.90 0.67 0.77
1 0.96 0.99 0.98
Accuracy 0.96

Table B.1: Testing accuracy by model with a direct adaption of Roter and Dordevic’s methodology.

As we have previously stated, the lack of a train test split calls the validity of these
accuracies into question [6]. However, these results verify that we correctly understood
Roter and Dordevic’s technique.

To correct Roter and Dordevic’s methodology, we started with a balanced chemical
composition dataset. Unlike the imbalanced data, this has an equal number of superconductors
and non-superconductors. Once again we ran PCA and reduced the vector space from 81 to
15. We them conducted a 70:15:15 train, test, validate split. We trained on the designated

training data and validated on the validation data.
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Model Class | Precision | Recall | F1-Score
Boosted Trees 0 0.86 0.90 0.88
1 0.90 0.85 0.87
Accuracy 0.88
Bagged Trees 0 0.89 0.96 0.92
1 0.95 0.87 0.91
Accuracy 0.92
k-NN (k=5) 0 0.92 0.91 0.91
1 0.91 0.91 0.91
Accuracy 0.91

Table B.2: Testing accuracy by model on Roter and Dordevic’s technique with a train-test-validate
split implemented.

Table B.2 provides a clearer view on the effectiveness of Roter and Dordevic’s method.
While they cited k-NN as the most effective [8], we found Bagged Trees performed better
on a separated test set. Once train-test splits were implemented, the best model accuracy

dropped to 92%.

B.2 Replication of Roter and Dordevic’s Regression Results

First we will go over our attempted reproduction of Roter and Dordevic’s results. We
achieved a root-mean-square error (RMSE) of approximately 4.11 K. This is significantly
smaller than the RMSE of 8.91 K presented by Roter and Dordevic and we are suspicious
that this may involve the missing 9,428 samples from SuperCon [8]. In other cases, the
results of our attempt agree with this smaller RMSE [1]. We found a ATy with a mean
value of —0.0093 K and a standard deviation of 4.1125 K. The exact distribution is shown

in Figure B.2.
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Figure B.1: These plots are the result of our attempt to recreate Roter and Dordevic’s results.
(a) Scatter plot of predicted critical temperature versus the true critical temperature. Red line is
y = = and only used for visualization. The green lines are shifted by + 8.91 to represent the RMSE
achieved by Roter and Dordevic [8]. The blue lines are shifted by + 4.11 to represent the RMSE
achieved by our recreation. (b) Scatter plot of Predicted T - True T versus True To. The red
shaded region is the area where the predicted critical temperature is less than 0 K. Both plots make
use of transparent points to better visualize density.
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Figure B.2: Resolution histogram when recreating the results of Roter and Dordevic.
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